ARTST PRO ECT

INTRODUCTION

The goal of this project was to propose the materials, manufacturing processes, and design of a new airplane door structure using lattices to minimize weight without compromising structural integrity or increasing production costs.

Standard door versus Lattice Proptype

- Standard model utilizes riveted C-channels and plates
- Majority of parts machined from aluminum
- Ribs are not optimized

DESIGN CONCEPT

- Lattice elements created subtractively from beams
- Water jet to create lattice structure and cuts for folding
- Sheets folded and connected using blind rivets
- Three unique parts for vertical beam, horizontal beam and skin

Unfolded Rib Section

Folded Rib Section

LATECOERE

MANUFACTURING AND MATERIALS

Rivet Holes

- 7075-T6 aluminum alloy chosen for high stiffness and strength with low weight
- Rivets provide consistent and efficient joints between parts
- Water jetting allows for faster and cheaper manufacturing cycle of lattice structured door beams

FINITE ELEMENT MODELING

- Parts modeled in SOLIDWORKS
- ABAQUS software used for FEA
- Analysis done in 2D using midplanes of 3D model
- Solved for stress, deformation and buckling

Stress Results 19.8 psi

Stress Concentrations

Deformation Results 9.5 psi

Buckling Results 13.2 psi

PROTOTYPING AND VALIDATION

Horizontal Section

Skin Exterior

Acknowledgements

- Industry mentor Sebastien Devillez
- Faculty mentor Lucas Meza

Mechanical Engineering Capstone Exposition

Seattle

- $\frac{1}{2}$ scale model section created for validation - Skin and beams fabricated out of 2 ply chipboard - Ribs and skin connected using aluminum blind rivets - Cuts were made using the laser cutter in the ME Shop - Riveting was done using manual rivet guns.

Vertical Section

Prototype Assembly

• FEA results meet critical stress and deflection design criteria • Model weight under 50 kg meets expectations, lattice structure saves estimated 3 kg

• Results will be validated by two tests, distributed load on skin, as well as bending test on individual folded beam • Low stress areas and high buckling eigenvalue indicate room for further optimization through material removal • Analysis and prototype demonstrate viability of lattice structured door and manufacturing method

- Latecoere
- Shop masters Eamon and Veasna

May 29th 2024, Husky Union Building, University of Washington,